Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This study quantifies the overturning circulation in the Arctic Ocean and associated heat transport (HT) and freshwater transport (FWT) from October 2004 to May 2010 based on hydrographic and current observations. Our main data source consists of 1165 moored instrument records in the four Arctic main gateways: Davis Strait, Fram Strait, Bering Strait, and the Barents Sea Opening. We employ a box inverse model to obtain mass and salt balanced velocity fields, which are then used to quantify the overturning circulation as well as HT and FWT. Atlantic Water is transformed into two different water masses in the Arctic Ocean at a rate of 4.3 Sv (1 Sv ≡ 106m3s−1). Combined with 0.7 Sv of Bering Strait inflow and 0.15 Sv of surface freshwater flux, 2.2 Sv flows back to the south through Davis Strait and western Fram Strait as the upper limb of the overturning circulation, and 2.9 Sv returns southward through Fram Strait as the lower limb of the overturning. The Arctic Ocean imports heat of 180 ± 57 TW (long-term mean ± standard deviation of monthly means) with a methodological uncertainty of 20 TW and exports FW of 156 ± 91 mSv with an uncertainty of 61 mSv over the 6 years with a potential offset of ∼30 mSv. The HT and FWT have large seasonalities ranging between 110 and 260 TW (maximum in winter) and between 40 and 260 mSv (maximum in winter), respectively. The obtained overturning circulation and associated HT and FWT presented here are vital information to better understand the northern extent of the Atlantic meridional overturning circulation.more » « less
-
Arctic Ocean properties and processes are highly relevant to the regional and global coupled climate system, yet still scarcely observed, especially in winter. Team OCEAN conducted a full year of physical oceanography observations as part of the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC), a drift with the Arctic sea ice from October 2019 to September 2020. An international team designed and implemented the program to characterize the Arctic Ocean system in unprecedented detail, from the seafloor to the air-sea ice-ocean interface, from sub-mesoscales to pan-Arctic. The oceanographic measurements were coordinated with the other teams to explore the ocean physics and linkages to the climate and ecosystem. This paper introduces the major components of the physical oceanography program and complements the other team overviews of the MOSAiC observational program. Team OCEAN’s sampling strategy was designed around hydrographic ship-, ice- and autonomous platform-based measurements to improve the understanding of regional circulation and mixing processes. Measurements were carried out both routinely, with a regular schedule, and in response to storms or opening leads. Here we present along-drift time series of hydrographic properties, allowing insights into the seasonal and regional evolution of the water column from winter in the Laptev Sea to early summer in Fram Strait: freshening of the surface, deepening of the mixed layer, increase in temperature and salinity of the Atlantic Water. We also highlight the presence of Canada Basin deep water intrusions and a surface meltwater layer in leads. MOSAiC most likely was the most comprehensive program ever conducted over the ice-covered Arctic Ocean. While data analysis and interpretation are ongoing, the acquired datasets will support a wide range of physical oceanography and multi-disciplinary research. They will provide a significant foundation for assessing and advancing modeling capabilities in the Arctic Ocean.more » « less
An official website of the United States government
